Tobacco & It’s Etiology In Carcinogenesis
(for more topics, visit www.nayyarENT.com)

- There are over 19 known carcinogens (proven in humans) in cigarette smoke
- More than 62 proven in animals
- Following are some of the most potent carcinogens
 - **Polynuclear aromatic hydrocarbons (PAH)**
 - E.g. benzopyrene
 - Changes to epoxide \rightarrow attach to nuclear DNA \rightarrow may either kill the cell or cause agenetic mutation \rightarrow If the mutation inhibits programmed cell death, the cell can survive to become a cancer cell
 - Carcinogenity is radiomimetic, i.e. similar to that produced by ionizing nuclear radiation
 - **Acrolein**
 - Gives smoke an acrid smell and an irritating, lacrimary effect
 - Permanently binds to DNA
 - Causes cancers in a manner similar to PAH
 - However, acrolein is 1000 times more abundant than PAHs in cigarette smoke
 - And is able to react as is, without metabolic activation
 - **Nitrosamines**
 - Found in cigarette smoke but not in uncured tobacco leaves
 - Due to combustion effects
 - Aromatic amines
 - Vinyl chloride
 - Ethylene oxide
 - Aldehydes
 - Phenolic compounds
 - Arsenic
 - Nickel
 - Chromium
 - Cadmium
 - **Radioactive carcinogens**
 - In addition to chemical, nonradioactive carcinogens, tobacco and tobacco smoke contain small amounts of lead-210Pb and polonium-210Po both of which are radioactive carcinogens

Smokeless tobacco products (ie. Chewable forms)

- A variety of carcinogens have been detected in smokeless tobacco products
- The most abundant strong carcinogens are NNK and NNN, which are typically found in total amounts of 1 to 10 ppm in smokeless tobacco products, levels 10 to 1,000 times higher than N-nitrosamines in other products designed for human consumption.
Several other carcinogenic compounds such as formaldehyde, acetaldehyde, hydrazine, cadmium, nickel, and polonium-210 are also present.

- NNK = 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
- NNN = N'-nitrosonornicotine

Nicotine

- **Is a stimulant** → one of the main factors leading to continued tobacco smoking
- **On average takes only ten seconds to reach the brain**
- **Although nicotine does play a role in acute episodes of some diseases** (including stroke, impotence, and heart disease) by its stimulation of adrenaline release
- **longer term effects are more the result of the products of the smouldering combustion process**
 - **Nicotine** per se, is not carcinogenic or mutagenic
 - **However, it inhibits apoptosis**, therefore accelerating existing cancers
 - **Also, NNK**, a nicotine derivative converted from nicotine, can be carcinogenic.

Genetic

- **Cigarette smoke can turn on or off some of the genes, which otherwise would remain inactive or active respectively**
- **Smoking turns off some DNA repair genes that cannot be reversed**
- **It also switches off some genes responsible from protection from cancer growth in the body**

Particular forms of tobacco use

- Chewing tobacco
- Cigars
- Hookahs
- Snuff
- Reverse smoking
- Chutta
- Misri
Exhaled mainstream smoke

- More harmful
- Reasons
 - Exists at lower temperatures → chemical compounds undergo changes which can cause them to become more dangerous
 - Smoke undergoes changes as it ages, which causes the transformation of the compound NO into the more toxic NO2
 - Further, volatilization causes smoke particles to become smaller, and thus more easily embedded deep into the lung of anyone who later breathes the air.

Mechanism of Tumor induction by tobacco products

- Central track is major pathway
- Minor pathways
 - Carcinogens directly bind to receptors e.g. EGFR & Cox-2 → decreased apoptosis, increased angiogenesis
 - Enzymatic methylation of promoter regions of genes → gene silencing → Can occur in tumor suppressor genes

(for more topics, visit www.nayyarENT.com)