Acoustic Neuroma / Vestibular Schwannoma

For more ENT topics, visit www.nayyarENT.com

Introduction

- Benign tumour arising from abnormally proliferative schwann cells, which envelope the lateral portion of the vestibular nerve in the internal acoustic meatus

History

- First described by Sandifort in 1777
- William House introduced the translabyrinthine and middle fossa approach
- At 1992 consensus conference, name ‘vestibular schwannoma’ adopted

Epidemiology

- 8% of all intracranial tumors
- 90% of CP angle tumors
- > 95% sporadic (unilateral)
- 5% Neurofibromatosis type 2 (bilateral)
- Gender F:M= 3:2
- Age- fourth and sixth
- Incidence in general population 10 – 15 / million/ year
- Incidence in temporal bone collections 1-2%

Pathogenesis

- Usually arise from vestibular portion of eight nerve
- Commonly from IAC portion of the nerve, from its OBERSTEINER-REDLICH zone which is junction of central myelin produced by glial cells & and peripheral myelin produced by schwann cells. Also is the glial & neurilemmal junction.
- Superior division more common (some books mention equal frequency)

Histopathology

- Macroscopic
 - Benign
 - Yellowish to pinkish grey
 - Firm to rubbery consistency
 - Encapsulated
 - Nodular surface
 - Well defined plane of separation
 - Cysts formation within substance of tumor common → may form bulk of tumor
 - Cyst may have –CSF/hemorrhagic fluid
- Microscopic
 - Two patterns
 - Antoni A → closely packed cells with small spindle-shaped and densely stained nuclei. A whirled appearance of Antoni type A cells is called a Verocay body
 - Antoni B → looser cellular aggregation of vacuolated pleomorphic cells
Positive immunostaining with S100 \(\rightarrow\) differentiates from meningioma

Tumor spread
- From schwann cells of vestibular nerve in IAC
- Expands \(\rightarrow\) widens & erodes IAC \(\rightarrow\) cerebellopontine angle
- Involves cranial nerve V or IX, X, XI depending upon the direction of spread
- Later, brainstem, cerebellum \(\rightarrow\) increased intra cranial pressure

GROWTH RATE AND GROWTH PATTERN
- Mean growth rate \(\rightarrow\) 1.1 mm / yr (Scott Brown)
- Growth patterns
 1. Continuous growth
 2. No measurable growth
 3. No measurable growth followed by continuous growth
 4. Negative growth
 5. Various positive growth patterns

Classification
- Jackler system (adopted at Tokyo consensus conference 2001)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Extrameatal Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>Small 1-10</td>
</tr>
<tr>
<td>Grade 2</td>
<td>Medium 11-20</td>
</tr>
<tr>
<td>Grade 3</td>
<td>Moderately Large 21-30</td>
</tr>
<tr>
<td>Grade 4</td>
<td>Large 31-40</td>
</tr>
<tr>
<td>Grade 5</td>
<td>Giant >40</td>
</tr>
</tbody>
</table>

- Note should also be made if fundus empty or filled by tumor
- Also if VS sac was cystic

Clinical Features
- Stage 1 – Otological Stage
 - Progressive unilateral SNHL with tinnitus, more in higher frequency
 - In 5 – 10 % can be SSNHL
 - Very poor speech discrimination
 - Imbalance, unsteadiness
 - Nystagmus +/-
 - Facial nerve involvement \(\rightarrow\) hypoesthesia post EAC, taste loss, decreased lacrimation
• STAGE 2 – Trigeminal nerve involvement
 o Corneal reflex loss
 o Facial paraesthesia
• STAGE 3 – Brain stem & cerebellar compression
 o Ataxia, motor/sensory loss over extremities
 o Cerebellar ataxia, +ve romberg, dysdiadochokinesis, incoordination
• STAGE 4 – Increasing intracranial pressure
 o Headache, nystagmus, vertigo, diplopia, papilledema
• STAGE 5 – Terminal stage

INVESTIGATIONS

• PTA
 - Asymmetric unilateral SNHL
 - Slow progressive
 - More in higher frequencies
• Audiological tests
 - Speech discrimination poor; Roll over phenomenon present
 - SISI low → recruitment absent
 - ABLB → no recruitment
 - Tone decay → high → retrocochlear hearing loss
 - Stapedial reflex absent
• Diagnostic bekesy audiometry
 - Types III & IV → retrocochlear loss
• Electrocochleography
 - Broad waveform
• ABR
 - Very sensitive → 95% -100% detection rates
 - Interaural latency of >0.2 msec in wave V between 2 ears is significant
 - I-V interpeak latency > 4ms
• Caloric tests & electronystagmography
 - Canal paresis in 96 % of cases
 - Inferior vestibular nerve schwannoma may not show changes in caloric response
• Conventional x-ray
 - Views
 ▪ Stenver projection
 ▪ Chamberlain-towne projection
 ▪ Caldwell view
 - Look for
 ▪ Dilated IAC
 ▪ Funelling of IAC
 ▪ Erosion of posterior lip of IAC
• CT Scan
 - Can detect posterior fossa tumors upto 0.5 cm
 - Combined with intra thecal air (oxygen cisternography), even intra meatal tumors can be detected
• MRI with gadolinium contrast
 - Superior to CT Scan
 - Gold standard in imaging for vestibular schwannoma
 - Intracanalicular tumor of even a few mms can be detected.
 - Advantages
 ▪ High intrinsic contrast between tissues
 ▪ Absence of bone artefacts
 ▪ Multiplanar imaging
 ▪ No radiation

Differential diagnosis of CP angle tumor

1. Acoustic Neuroma 90%
2. Meningioma
 o Broad base on posterior surface of temporal bone or petrous bone
 o Imaging features
3. Primary Cholesteatoma
 o From congenital epithelial rest cell in temporal bone of PCF
 o Presents with progressive facial palsy or hemifacial spasm
 o Imaging
4. Arachnoid cyst
 o Congenital malformation
 o Infection-adhesive aracnoiditis
 o Trauma
 o Have CSF-so hypointense on T1
5. Schwannoma of other cranial nerves
 o Low in Jugular foramen(IX, X)
 o Facial paresis
6. Lipoma
7. Choroid plexus papilloma
 o Von Hippel Lindou disease
8. Hemangioma
9. Hemangiopericytoma – Bad prognosis
10. Glomus Jugulare(type IV)

Treatment decision factors

• Patient → age, general health, status of hearing in the contralateral ear, preference
• Tumor → size, location, extent, growth rate, bilateral, recurrence
• Surgeon skill & preference

• Treatment options
 o Observation
 o Stereotactic radiation therapy
 o Complete surgical excision
• Currently, no randomized, prospective clinical trial has compared the three treatment options and there are no clearly accepted, evidence-based, best practices for managing
acoustic neuroma

Conservative management (Wait & Scan)

- **Indications**
 - Patients with small tumors
 - Advanced age
 - Poor general condition not fit for surgery
 - Unwilling for surgery
- **Yearly scanning advised (MRI)**
- **Disadvantage**
 - Risk of losing useful hearing (10-43%) in spite of no growth on MRI

Surgery

- **3 main approaches**
 - Middle fossa approach
 - Translabyrinthine approach
 - Retrosigmoid approach
- **Middle Fossa approach**
 - Young pt
 - Hearing to be preserved
 - Small tumour < 2.5 cms
 - Good exposure of lateral IAC, CPA, and clivus
 - Drilling is extradural decreasing morbidity
 - Disad
 - Temporal lobe retraction
 - Must dissect around facial nerve due to its superior position
 - Limited posterior fossa exposure
 - Steps
 - Position: Supine with head turned to affected side
 - Incision: Front of ear at level of zygomatic arch & curves upwards and backwards to sup temporal line expose the squamous temporal bone
 - 4X4 cm craniotomy, 2/3 ant to EAC, 1/3 post to it.
 - Middle fossa dura elevated off surface of petrous apex
 - Middle meningeal artery identified, followed till GSPN
 - Arcuate eminence identified
 - **House approach** – Follow GSPN to geniculate ganglion → trace back facial nerve to reach IAM
 - **Fisch approach** - angle between line of GSPN and plane of SCC (arcuate eminence) bissected → gives line of IAM
 - IAC identified, dura of IAC opened to long axis
 - Tumor dissected free, sup and inf vestibular nerve totally ablated
 - Internal auditory artery preserved
- **Translabyrinthine approach**
 - In cases with unserviceable hearing
 - Wide exposure of posterior fossa
 - No size limit for resection
 - Facial nerve easily identified throughout
 - Ease of facial nerve repair if damaged/resected during removal
 - Low recurrence
- Low headaches
- Disadv
 - Residual hearing is sacrificed
 - Requires abdominal fat graft
- Steps
 - Extension of Std postauricular incison upper end upto anterior wall of external meatus
 - Lower limit: 2cm behind mastoid tip
 - Superiorly based periosteal flap
 - Complete Mastoidectomy done, labyrinthectomy – IAC dissection
 - Dura of IAC opened, transverse crest & Bill’s bar identified
 - Debulking of tumor done & gradual complete dissection
 - Intracapsular removal of tumor using (House Urban rotatory dissector)
 - Meticulous closure middle ear with muscle, fascia graft for dura and antrum, mastoid defect with abdominal fat

- Retrosigmoid/Suboccipital Approach
 - Large size tumor
 - Hearing preservation possible
 - Wide exposure of brainstem and lower cranial nerves
 - Neurosurgeon familiarity
 - Consistent facial nerve identification
 - Disadv
 - Must be medially located
 - Lateral tumors risk injury to endolymphatic sac and vestibular labyrinth
 - Cerebellar retraction
 - Steps
 - Position: *Modified Park Bench* (supine with ipsilateral shoulder and hip bumped with rolls and padding, head flexed and rotated to opp shoulder)
 - ‘C’ shaped curvilinear incision from upper edge of pinna to spine of C2
 - 4x4 cm Craniotomy performed
 - **Anterior limit: Sigmoid sinus**
 - **Superior limit: transverse sinus**
 - Dura opened by triradiate incision
 - CSF run off or anaesthetist decreases CSF pressure
 - Cerebellum falls under own pressure plus retractor can be applied
 - Ant based U shaped opening made in dura
 - Intracranial segment of tumor debulked
 - Prevent injuy to V nerve, AICA, Lower Cr nerves
 - Another Laterally or medially based dural flap opened over IAC
 - Meatus drilled-exposing lesion till Bill’s bar & transverse crest
 - If hearing preservation desired **drill medial to lateral**
 - Seal with Bone wax, fibrin glue after closing dura
Conventional Radiotherapy – No role

Gamma knife radiosurgery

- **Principle** → To deliver a single precise, conformed dose of radiation tailored to margins of tumor
- **Indication**
 - No fixed guidelines
 - Smaller lesion to medium
 - Older individual
- **Method**
 - Rigid stereotactic frame attached to patient’s head
 - X, Y & Z co ordinates
 - Combined with radiological images, usually MRI
 - Targets pathological structures
 - Uses ionizing radiation (array of cobalt 201 sources or linear accelerator)
 - Median peripheral dose of 15 Gy
 - Directed through a variable array of collimators onto a single point
 - Delivers single high dose of radiation
- **Fate of tumor**
 - Tumor remains in situ but growth is stabilized
 - Modest degree of shrinkage
 - May swell in initial 6-18 months due to radiation oedema
 - Gadolium enhancement in centre is reduced
 - 5% regrowth
 - **Upto 92% control rate has been achieved**
- **Complications**
 - Cerebral oedema
 - Hydrocephalus
 - Vertigo
 - Seizures
 - Headache
 - Secondary oncogenesis - 5 cases reported

Fourth pathway

- Stereotactic RT after microsurgical debulking

Bilateral Vestibular Schwannoma (Neurofibromatosis-2)

- **Treatment options vary**
- **Bilateral-small tumor (less than 2 cm) & good hearing is a candidate for hearing preservation**
 - Surgery on one side (larger tumor) or with worse hearing & if hearing preserved → surgery other side in 6 months
- **Observation without surgery**
 - Small tumor
 - Unilateral hearing ear
Recent advances

- Ultrasonic aspiration
- Minimally invasive endoscopic neurosurgery
- KTP-532 CO2, Argon laser

For more ENT topics, visit www.nayyarENT.com